If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-36x=0
a = 20; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·20·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*20}=\frac{0}{40} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*20}=\frac{72}{40} =1+4/5 $
| y=25-y/2 | | n/7-8=-9 | | 0.45x+2.25=0.20+3.50 | | 5x=32+× | | 6x-7=10x+6 | | -2u-8-9u=27 | | 15/4=9/2t | | 2/9-7n/18=1 | | 10x-40+2x=-25-8x | | 4=1/4x+3=10 | | 3m+9=36m= | | 2n-7n=1/9 | | Y=x/6-8 | | 6(x-7)=2(5x+3) | | Y=-6x-3/4 | | 2/9-7n/18=1/9 | | 1/3(x-6)+1/8(x+8)=x+9 | | 140x+502=40x | | 7(2x+6)-4(2x-3)=10x+19 | | x/19.7=6.609137055838 | | |c-8|=10 | | 24+n/5=-16 | | 4×g×8=64 | | 2x+491-x)=11+5x | | 7(4x-9)=26+6x- | | 8x+20-5x-30=180 | | 4w+w=35 | | .5w-4= | | -2x+8=16,x= | | .5w-4=8 | | 1400=10z^+2 | | (5x+14)+39=180 |